Age-dependence in the homeostatic upregulation of hippocampal dendritic spine number during blocked synaptic transmission.

نویسندگان

  • Sergei A Kirov
  • C Alex Goddard
  • Kristen M Harris
چکیده

Homeostatic regulation of spine number in mature hippocampal neurons results in more dendritic spines when synaptic transmission is blocked, providing a mechanism to compensate for diminished synaptic input. It is unsettled whether blockade of synaptic transmission also elevates spine number during development. To address this question, synaptic transmission was blocked in rat hippocampal slices during critical developmental stages of spine formation at postnatal days (P) 6-P22 and compared to adults. CA1 pyramidal cells were labeled with DiI and maintained for 5 h in one of three conditions, control artificial cerebrospinal fluid (ACSF), block media containing synaptic transmission antagonists in ACSF, or block media containing synaptic transmission antagonists in a nominally calcium-free ACSF with high magnesium. Slices were fixed in mixed aldehydes, sectioned, and the lateral dendrites were imaged in stratum radiatum with confocal microscopy. Dendritic spine density was quantified per unit length of dendrite. At P6-7 there were only a few protrusions emerging from the dendrites, which were predominantly filopodia-like in appearance. At both P11-12 and P15-16 there was a mixture of dendritic spines and filopodia-like structures. By P20-22 dendritic spines predominated and spine density was about 82% of the adult level. Dendritic spine density increased during blocked synaptic transmission at P20-22 as in adults, but was unchanged during blockade at younger ages. When extracellular calcium was nominally zero, dendritic spine density further increased on P20-22 dendrites as in adults. In contrast, spine density decreased along P11-12 dendrites under the nominally zero calcium condition. Under control conditions, dendritic protrusions were longer at P6-7 than at all other ages, which did not differ from one another. When synaptic transmission was blocked, dendritic protrusions further elongated at P6-7 only. Under the nominally zero calcium condition with blocked synaptic transmission, dendritic protrusions shortened at P11-12 only. These findings reveal age-dependent changes in the manifestation of homeostatic control of dendritic spines that could be mediated by maturational changes in mechanisms regulating postsynaptic calcium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones.

The refinement and plasticity of neuronal connections require synaptic activity and neurotrophin signalling; their specific contributions and interplay are, however, poorly understood. We show here that brain-derived neurotrophic factor (BDNF) increased spine density in apical dendrites of CA1 pyramidal neurones in organotypic slice cultures prepared from postnatal rat hippocampal slices. This ...

متن کامل

Synaptogenesis on mature hippocampal dendrites occurs via filopodia and immature spines during blocked synaptic transmission.

During development, dendritic spines emerge as stubby protrusions from single synapses on dendritic shafts or from retracting filopodia, many of which have more than one synapse. These structures are rarely encountered in the mature brain. Recently, confocal and two-photon microscopy have revealed a proliferation of new filopodia-like protrusions in mature hippocampal slices, especially when sy...

متن کامل

Activin increases the number of synaptic contacts and the length of dendritic spine necks by modulating spinal actin dynamics.

Long-lasting modifications in synaptic transmission depend on de novo gene expression in neurons. The expression of activin, a member of the transforming growth factor beta (TGF-beta) superfamily, is upregulated during hippocampal long-term potentiation (LTP). Here, we show that activin increased the average number of presynaptic contacts on dendritic spines by increasing the population of spin...

متن کامل

The effect of ketamine on synaptic transmission and synaptic plasticity in CA1 area of rat hippocampal slices

The effect of ketamine (1-100 µM), which has NMDA receptor antagonist properties, on synaptic transmission and long-term potentiation (LTP) in CAl area of rat hippocampus was examined in vitro. Field potentials were recorded in pyramidal cell layer following Schaffer collateral stimulation. Primed-burst stimulation (PEs) was used for induction of LTP. The amplitude of population spiks (PS) was ...

متن کامل

Allicin attenuates tunicamycin-induced cognitive deficits in rats via its synaptic plasticity regulatory activity

Objective(s): To illuminate the functional effects of allicin on rats with cognitive deficits induced by tunicamycin (TM) and the molecular mechanism of this process. Materials and Methods: 200–250 g male SD rats were divided into three groups at random: control group (n=12), TM group (5 μl, 50 μM, i.c.v, n=12), and allicin treatment group (180 mg/kg/d with chow diet, n=12). After 16 weeks of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuropharmacology

دوره 47 5  شماره 

صفحات  -

تاریخ انتشار 2004